

¹H and ³¹P NMR Determination of the Enantiomeric Purity of Quaternary Phosphonium Cations Using TRISPHAT as Chiral Shift Agent

Catherine Ginglinger, Damien Jeannerat and Jérôme Lacour*

Département de Chimie Organique, Université de Genève, quai Ernest Ansermet 30, CH-1211 Genève-4, Switzerland.

Sylvain Jugé* and Jacques Uziel

Laboratoire de Synthèse Organique Sélective et Chimie Organométallique Université de Cergy-Pontoise, 5 mail Gay Lussac F-95031 Cergy-Pontoise, France.

Received 22 June 1998; accepted 28 July 1998

Abstract: The enantiomeric purity of quaternary phosphonium cations can be easily determined in ¹H and ³¹P-NMR using TRISPHAT anion as chiral shift agent. © 1998 Elsevier Science Ltd. All rights reserved.

Since the initial works of Mc Ewen, Horner and Luckenbach, ¹ few studies have been performed on chiral quaternary phosphonium salts in asymmetric synthesis, ² certainly due to the difficulty of their preparation in enantiopure form. Significant progresses have been recently described for the direct formation of quaternary phosphonium salts from chiral phosphine-borane complexes, ³ whose asymmetric preparation from oxazaphospholidine derived from ephedrine is now well established. ⁴ This efficient route to chiral phosphonium salts opens new fields of application, but also poses the problem of the determination of their enantiomeric purity. As few methods have already been described, ⁵ we report herein the application of TRISPHAT anion 1 as an efficient chiral NMR shift reagent for quaternary phosphonium salts. ⁶

$$\begin{array}{c} \text{CI} \\ \text{CI} \\$$

Recently, we have shown that chiral (Δ or Λ) D_3 -symmetric tris(tetrachlorobenzenediolato)phosphate(V) anion 1 (or TRISPHAT) is configurationally stable in solution associated with ammonium counterions. Anion 1 is an efficient NMR chiral shift agent for ruthenium(II) tris(bis-imine) complexes and a valuable host in molecular

E-mails: lacour@sc2a.unige.ch & juge@u-cergy.fr

recognition studies conferring unique properties to its ion pairs. Although anion 1 and cations 2, 3 are topologically different, we thought that diastereoselective interactions would still occur between the ions $(R^+-\Lambda^- vs. S^+-\Lambda^-)$ and lead, consequently, to a magnetic non-equivalence of 1H and ^{31}P NMR signals. We have verified this hypothesis with racemic and optically active quaternary phosphonium salts 2 and 3, prepared in a single step by quaternization of (\pm) -, (S)- and (\pm) -, (R)-o-anisyl methyl phenyl phosphine borane with benzyl bromide and CD_3I respectively. Readily prepared Bu_3NH^+ -(M)-1 salt ((+)-1a, 96% ee) was used as the chiral shift reagent.

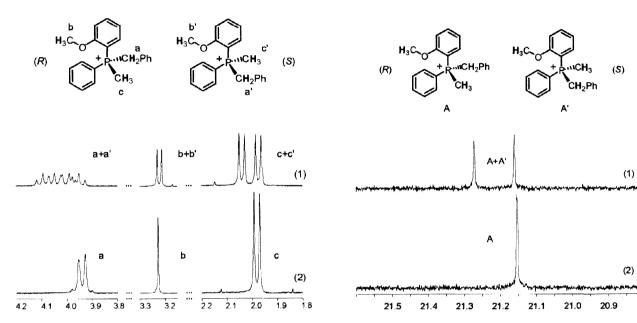


Figure 1. ¹H NMR spectra (600 MHz, C_6D_6 , parts) of 2(bromide) in the presence of 1.0 equiv. of 1a: (1) (±)-2 and (2) (+)-2. Signals (a,a'), (b,b') and (c,c') correspond to the protons of groups CH_2Ph , OCH_3 and P^+CH_3 respectively. Signals (b,b') are reduced in size by a factor of four.

Figure 2. ³¹P NMR spectra (243 MHz, C_6D_6 , part) of 2(bromide) in the presence of 1.0 equiv. of 1a: (1) (±)-2 and (2) (+)-2.

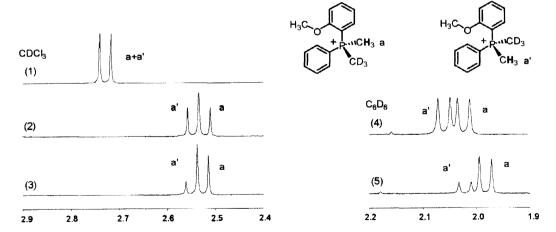


Figure 3. ¹H NMR spectra (600 MHz, part) of 3(iodide) in the absence (1, in CDCl₃) and presence of 1.0 equiv. of 1a: (\pm) -3 [(2) in CDCl₃ and (4) in C₆D₆]; (-)-3 [(3) in CDCl₃ and (5) in C₆D₆].

As expected, addition of ~1.0 equiv. of (M or Λ)-1 to solutions of (\pm)-2, (R)-(\pm)-2 in CDCl₃, CDCl₃:C₆D₆ (1:1) or C₆D₆ led to the signal separation in ¹H and ³¹P-NMR spectra of the two enantiomers of phosphonium 2. We were able to distinguish between the two enantiomers and show that sample (+)-2 is indeed enantiomerically pure. Parts of the resulting spectra of 2 in C₆D₆ upon addition of the shift reagent are shown in Figure 1 (¹H, 600 MHz) and Figure 2 (³¹P, 243 MHz). In ¹H-NMR, the magnitude of the induced difference in chemical shifts ($\Delta\Delta\delta$ in ppm) of some analogous protons (OCH₃ and P⁺CH₃) of the two enantiomers of 2 are summarized in Table 1. Fairly strong solvent effect was observed as the use of less polar C₆D₆ (ε 2.27) led to better signal separation than CHCl₃ (ε 4.81) or a mixture of these solvents (Table 1, entries 2, 3). 10 It is reasonable to think that it is due to closer interactions within the diastereomeric ion pairs in the less polar solvent C₆D₆, increasing the non-equivalence of the signals of the two enantiomers of 2. We may point out that the phosphonium salts 2(bromide) and 3(iodide) are insoluble in C₆D₆ and that their solubilization occurs only in the presence of TRISPHAT proving the formation of new ion pair species. Simple observation is enough to verify that sample (+)-2 is enantiopure as no trace of the other enantiomer can be observed in the NMR spectra. However the analysis of the aromatic and the diastereotopic benzylic protons (although quite well resolved, Figure 1) is complicated enough not to be used for the determination of the enantiomeric purity of 2. In the case of ³¹P-NMR spectra, the signal corresponding to the phosphonium cation was also well resolved in C₆D₆ (Table 1, entry 3, figure 2) and offers an alternative method for the determination of the enantiomeric purity of these compounds.

The determination of the enantiomeric purity of phosphonium cation 3 was a priori more challenging, as its P chirality resides only in an isotopic difference for the hydrogen atoms of the two methyl groups. Addition of ~ 1.0 equiv. of 1a to solutions of (\pm) -3 and (S)-(-)-3 in CDCl₃ or C_6D_6 , still led to the non-equivalence of the ¹H-NMR signals of the two enantiomers as shown in Figure 3. However if the signal of P-CH₃ group shows a magnetic non-equivalence for the two enantiomers in ¹H-NMR ($\Delta\Delta\delta_{CDCl3}$ ~ 0.024 and $\Delta\Delta\delta_{C6D6}$ 0.036), curiously no difference appears for the signals in ³¹P-NMR neither in CDCl₃ nor in C_6D_6 . So in C_6D_6 , we were thus able to distinguish between the two enantiomers in ¹H-NMR and determine by integration of the respective signals that sample (-)-3 is enantiomerically enriched (ee 54% \pm 2%).

Table 1			
Signals	ΔΔδ in CHCl ₃ ^c	$\Delta\Delta\delta$ in 50% CHCl ₃ /C ₆ D ₆ $^{\rm c}$	$\Delta\Delta\delta$ in C_6D_6 °
OCH ₃ ^a	0.00	0.00	0.018
$P^{+}CH_{3}^{a}$	0.00	0.022	0.065
P^{+b}	0.019	0.012	0.112

^a ¹H NMR (600 MHz); ^b ³¹P NMR (243 MHz); ^c With 1.0 equiv. of (+)-1a.

In summary, by addition of chiral TRISPHAT anion 1 to the quaternary phosphonium cations 2 or 3, we have observed the magnetic non-equivalence of the signals for each enantiomer, using the readily accessible ^{1}H and ^{31}P nuclei. The difference observed is the best in the less polar solvent $C_{6}D_{6}$ and permits the easy determination of the enantiomeric excess by simple integration. We think that the NMR method using chiral TRISPHAT

anion 1 is of particular interest in order to observe the enantiomers of species bearing the chirality on the cationic center.

CG, DJ and JL are grateful for financial support of this work by the Swiss National Science Foundation; SJ and JU by the French Ministry of Research. We thank Mr. A. Pinto for NMR measurements.

References:

- a) Mc Ewen, W.E.; Maier, L.; Miller, B. *Topics in Phosphorus Chemistry*, Griffith, E.J. (Eds), Interscience Publishers, New York, **1965**, 2, 1-41; b) Horner, L *Pure Appl. Chem.* **1964**, 9, 225-244; c) Luckenbach, R. Z. *Naturforsch.*, B: Anorg. Chem, Org. Chem. **1976**, 31B(8), 1127-1134; d) For a recent review on chiral phosphorus preparation see: Petrusiewicz, K.M.; Zablocka, M. Chem. Rev. **1994**, 94, 1375-1411.
- a) Smith, D.J.H. in Comprehensive Organic Chemistry, Barton, D.; Ollis, W.D. (Eds), Pergamon Press, Oxford, 1982, 2, 1160-1163; b) Kolodiaznhyi, O.I. Tetrahedron: Asymmetry 1998, 9, 1279-1332.
- 3 Uziel, J.; Riegel, N.; Aka, B.; Figuière, P.; Jugé, S. Tetrahedron Lett. 1997, 38, 3405-3408.
- 4 a) Jugé, S.; Stephan, M.; Laffitte, J.A.; Genêt, J.P. Tetrahedron Lett. 1990, 31(44), 6357-6360; b) Jugé, S.; Stephan, M.; Merdès, R.; Genêt, J.P.; Halut-Desportes, S. J. Chem. Soc. Chem. Commun. 1993, 531-533; c) Kaloun, E.B.; Merdès, R.; Genêt, J.P.; Uziel, J.; Jugé, S. J. Organomet. Chem. 1997, 529, 455-463.
- The enantiomeric purity of phosphonium salts 2 and 3 can be determined by ¹³C and ²H NMR in a chiral liquid crystal: Meddour, A.; Courtieu, J.; Uziel, J., Jugé, S. in preparation.
- For a general article on NMR determination of enantiomeric purity, see: Parker, D. Chem. Rev. 1991, 91, 1441-1457.
- 7 Lacour, J.; Ginglinger, C.; Grivet, C.; Bernardinelli, G. Angew. Chem. Int. Ed. Engl. 1997, 36, 608-609.
- 8 Lacour, J.; Ginglinger, C.; Favarger, F.; Torche-Haldimann, S. Chem. Commun. 1997, 2285-2286.
- a) Lacour, J.; Barchéchath, S.; Jodry, J. J.; Ginglinger, C. *Tetrahedron Lett.* 1998, 39, 567-570; b) Lacour, J.; Ginglinger, C.; Favarger, F. *Tetrahedron Lett.* 1998, 39, 4825-4828; c) Lacour, J.; Jodry, J. J.; Ginglinger, C.; Torche-Haldimann, S. *Angew. Chem. Int. Ed. Engl.* 1998, in press.
- 10 Reichardt, C. Solvents and Solvent Effects in Organic Chemistry 2nd ed., VCH, Weinheim, 1988.